FACULTY OF SCIENCE DEPARTMENT OF PHYSICS IMAM UNIVERSITY

101Phys. Mid1 exam 1st semester 2014

NAME:		
ID:		
Section:		

تعليمات هامة: 1-يمنع منعاً باتاً استخدام المترجم أو ما يسمى بالاطلس. 2-يمنع استخدام الجوال أو الجهاز اللوحي كألة حاسبة. 3- اجابتان لنفس السؤال تلغي درجته.

	خاص بالأستاذة	
الدرجة المكتسبة	المستحقة الدرجة	السوال
	12	الأول
	6	الثاثي
	2	الثالث
	20	المجموع

دعواتنا لكن بالتوفيق

Constant:

 $g=9.8\,m/s^2$

Q1: Choose the correct answer and write the litter on it in the following table: (one point each)

12

1	2(a)	2 (b)	3	4	5	6	7	8	9	10	11

1-The components of vector \overrightarrow{A} are given as follows:

$$Ax = 5.6$$
 , $Ay = -4.7$

What is the angle between vector \vec{A} and positive direction of x – axis?

a. 320°

b. 180°

c. 90°

d. 127°

e. 230°

2-The components of vectors \vec{A} and \vec{B} are given as follows:

$$Ax = 5.1$$
 , $Bx = -2.6$
 $Ay = -5$, $By = -4.3$

(a) What is the unit vector notation of $\vec{A} + \vec{B}$

a. $2.5\hat{i} - 9.3\hat{j}$

b. $0.1 \hat{i} - 6.9 \hat{j}$ c. $-2.5 \hat{i} + 9.3 \hat{j}$ d. $7.7 \hat{i} - 0.7 \hat{j}$

e.
$$-7.7\hat{i} + 0.7\hat{j}$$

(b) What is the magnitude of vector sum $\vec{A} + \vec{B}$

a. 5.1

b. 2.5

c. -9.3

d. 9.6

e. -3.8

3-Two vectors are given as follows:

$$\vec{A} = -3\hat{\imath} + 6\hat{\jmath} - 5\hat{k}$$
$$\vec{B} = -2\hat{\imath} + 3\hat{\jmath} + \hat{k}$$

The vector dot product $\vec{A} \cdot \vec{B}$ equals:

a. -12

b. 10

c. 14

d. 19

e. 20

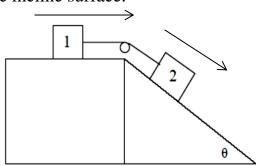
4- The subtracting of vector \vec{A} with its negative vector is:

a. A

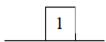
b. 2 A

c. $-\vec{A}$

d. zero


_	A , •	. •	C
`	Action-re	eaction	torces
J.	1 ICHOII-I	cacuon	10100

- a. sometimes act on the same object.
- b. always act on the same object.
- c. may be at right angles.
- d. always act on different objects
- 6. Suppose that an object is moving with a constant velocity. Make a statement concerning its acceleration.
- a. The acceleration must be constantly increasing.
- b. The acceleration must be constantly decreasing.
- c. The acceleration must be a constant non-zero value.
- d. The acceleration must be equal to zero.
- 7. A stone is thrown from the top of a building with an initial velocity of 20 m/s downward in 2 s. What is the building high?
 - a. 20.4 m
- b. 60 m
- c. 35 m
- d. 16 m
- e. 10 m
- 8.A 500-kilogram sports car accelerates uniformly from rest, reaching a speed of 30 m/s in 6 seconds. During the 6 seconds, the car has traveled a distance of:
 - a. 15 m
- b. 30 m
- c. 60 m d. 90 m
- e. 180 m


- 9. The unit vectors \hat{i} and \hat{j}
- a. can have a dot product equal to 1.
- b. can have a dot product equal to 0.
- c. can have a dot product k.
- d. can have a negative dot product.
- e. cannot be coplanar.

	it of force is:
a. $kg m^2/s$	
b. kg m/s	
c. kg m/s ²	
d. $kg m^2/s^2$	
e. $kg m^2/s^3$	
	force F accelerates a mass m with an acceleration a. If the same net plied to mass 2m, then the acceleration will be b. 2a. c. a/2. d. a/4.
_	

Q.2 Two blocks, both of mass 0.5 kg, are connected to each other by a thin string which is passed over a pulley as shown in the diagram. Block 1 sits on a rough horizontal part. Block 2 sits on a frictionless incline which forms an angle θ =30° with the horizontal. The system moves cause the incline surface:

a) Sketch a free body diagram for block 1(using the following drawing)?(1 point)

- b) What is the normal force on block 1? (1.5 points)
- c) Calculate the kinetic of force friction for the block $1(\mu_k = 0.4)$? (1.5points)
- d) Calculate the acceleration of the system if the tension of the string is 2.2N? (2points)
- Q.3 A car travel from x_i =30m at t=0 to x_f =50m at t=5s, what is the average velocity? (2points)